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Abstract

Background: To identify and rank the importance of key determinants of high medical expenses among breast
cancer patients and to understand the underlying effects of these determinants.

Methods: The Oncology Care Model (OCM) developed by the Center for Medicare & Medicaid Innovation were
used. The OCM data provided to Mount Sinai on 2938 breast-cancer episodes included both baseline periods and
three performance periods between Jan 1, 2012 and Jan 1, 2018. We included 11 variables representing information
on treatment, demography and socio-economics status, in addition to episode expenditures. OCM data were
collected from participating practices and payers. We applied a principled variable selection algorithm using a
flexible tree-based machine learning technique, Quantile Regression Forests.

Results: We found that the use of chemotherapy drugs (versus hormonal therapy) and interval of days without
chemotherapy predominantly affected medical expenses among high-cost breast cancer patients. The second-tier
major determinants were comorbidities and age. Receipt of surgery or radiation, geographically adjusted relative
cost and insurance type were also identified as important high-cost drivers. These factors had disproportionally
larger effects upon the high-cost patients.

Conclusions: Data-driven machine learning methods provide insights into the underlying web of factors driving up
the costs for breast cancer care management. Results from our study may help inform population health
management initiatives and allow policymakers to develop tailored interventions to meet the needs of those high-
cost patients and to avoid waste of scarce resource.
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Background
It is well known that healthcare costs are concentrated
among a small group of ‘high-cost’ patients [1]. Despite
they receive substantial care, many have unmet critical
healthcare needs and receive unnecessary and ineffective
treatments [2–5]. This suggests that ‘high-need, high-
cost’ patients are a natural group to seek for healthcare
quality improvement and cost reduction. In the US, pro-
viders and insurance plans have sought to develop care
coordination and disease management programs to re-
duce hospital use and costs [6]. Research has shown that
these programs are more effective when they are tar-
geted to patients who most likely benefit [2, 7, 8]. Stud-
ies have looked into developing predictive models to
identify high-cost patients prospectively [9]. Little is
known, however, about the relative importance of clin-
ical characteristics and demographic and social-
economic status to the distribution of health expendi-
tures. Identifying major underlying drivers of high
healthcare costs and understanding how they are linked
to different percentiles of the cost distribution, especially
the upper tail where the medical expenditures are con-
centrated, will provide insights into designing effective
and tailored interventions to meet the needs of high-cost
patients and reduce costs.
Breast cancer diagnosis is the top cancer diagnosis

among women in the US, accounting for 29% of all
newly diagnosed female cancers each year [10]. The
costs of breast cancer treatment and follow-up care put
a strain on both healthcare system and patients. Cost of
care in the first year after diagnosis varies from $54,664
to $127,444 depending on the stage at which breast can-
cer was diagnosed, based on the claim data from private
insurers from 2003 to 2010 [11]. If measured by episode
defined by the Oncology Care Model (OCM) – a pay-
ment model developed by the Center for Medicare &
Medicaid Innovation (CMMI) – the total Medicare ex-
penditure for breast cancer is $20,887 per episode on
average, with the largest component chemotherapy ac-
counting for 25.9% of the total spending [12].
The OCM is a new payment and delivery model that

began on July 1, 2016 and runs through Jun 30, 2021. It is
designed to improve the effectiveness and efficacy of spe-
cialty care. It aims to encourage participating practices to
improve care and lower costs for Medicare fee-for-service
beneficiaries with cancer through an episode-based pay-
ment model that financially incentivizes high-quality, co-
ordinated care. The OCM collects rich information on
episodes and patients from nearly 200 practices and 17
payers, including Center for Medicare & Medicaid Ser-
vices (CMS), and is well suited for health services research.
Since the main goal of the OCM is to set the target price
so that performance of participating providers can be
measured by comparing the actual cost to the target price,

current research utilizing the OCM data generally focuses
on expense prediction [13]. Investigating the underlying
drivers of high costs for cancer care and how they affect
high-cost patients is largely an untapped area [14]. In this
article, we leverage the large number of episodes on breast
cancer captured in the OCM data and establish the role of
key drivers of high costs for breast cancer patients. We be-
lieve this is the first study to utilize the OCM data and
aim to clarify the underlying drivers of high costs for can-
cer management.
Expenditure data is typically skewed and heteroscedas-

tic. Figure 1 shows a histogram of OCM episode expen-
ditures for breast cancer. The skewness measure is 1.67,
indicating the expenditure distribution is highly skewed.
Quantile regression (QR) methods are well suited to es-
timate how specified quantiles, or percentiles of the dis-
tribution of the outcome variable vary with covariates,
and is robust against outliers and is more informative
for a skewed distribution than mean-based regression
[15]. We demonstrate the value of a highly flexible ma-
chine learning based quantile regression method in
studying healthcare expenditures.
We used episode-based expenditure data on breast

cancer, drawn from the OCM, and included 11 variables
representing information on treatment, demography and
socio-economics status. We then exploited quantile re-
gression random forests (QRFs) – a machine learning
modeling technique – to rank the relative importance of
the covariates, and proposed and implemented a prin-
cipled algorithm to identify a set of major determinants
for high episode costs. We further quantified the effects
of the identified major determinants on different quan-
tiles of episode expenditures and emphasized new in-
sights that can be gained relative to high cost patients.

Methods
We extracted the cost and episode/patient related infor-
mation from the data that OCM provided to Mount Sinai
Hospital, which is a participating institution. The OCM is
a voluntary 5-year episode-based payment program devel-
oped by the CMMI, which started in 2016 among 194 US
oncology provider groups with the baseline period be-
tween January 2012 and June 2015. It was set to continue
for 5 years, with the goal of improving care coordination
and lowering care costs through episode-based cost per-
formance and quality measures [16, 17].
The cost is arranged at the episode level. Each episode

is triggered by either outpatient chemotherapy claim
along with a corresponding cancer diagnosis on the
claim, or the filling of a prescription for Part D covered
chemotherapy [18]. The duration of an episode is 6
months from the triggering event or at the patient’s
death. The eligibility criteria for a beneficiary’s episode
to be included in OCM are: 1) beneficiary is enrolled in
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Medicare Parts A and B; 2) beneficiary does not receive
the Medicare End Stage Renal Disease benefit; 3) benefi-
ciary has Medicare as his or her primary payer; 4) bene-
ficiary is not covered under Medicare Advantage or any
other group health program; 5) beneficiary received
chemotherapy treatment for cancer; 6) beneficiary has at
least one qualifying Evaluation & Management visit dur-
ing the 6 months of the episode. Episodes in which a
beneficiary dies or elects hospice care before the end of
6 months are considered eligible; death will be the only
case in which an episode will be shorter than 6months
[13]. The Mount Sinai OCM data included 2938 breast-
cancer episodes from 1333 patients in both the baseline
periods and three performance periods between Jan 1,
2012 and Jan 1, 2018 with the last episode ending on
June 30, 2018. All the episodes were included in our
analysis with no missing value.
We defined the actual cost associated with each epi-

sode as the outcome. It is the Medicare fee-for-service
(FFS) expenditures incurred during each episode, which
include all Medicare Part A and Part B FFS expenditures
(which will include the OCM Monthly Enhanced Oncol-
ogy Services payments), certain Part D expenditures, and
payments resulting from overlapping participation in
other Centers for Medicare & Medicaid Services models.
We included 11 covariates used in the OCM risk adjust-
ment model [13]. They were (1) Age, (2) Sex, (3)
Chemotherapy drugs taken/administered during the epi-
sodes. It is grouped into two categorized: Part D (only
Part D chemotherapy or long-term oral endocrine
chemotherapy) such as tamoxifen and an aromatase in-
hibitor, and Part B (Part B chemotherapy or other

therapies) such as antineo and cetuximab. The drugs in-
cluded in each category can be found in the OCM ther-
apy drug list provided by CMS [19]. Breast cancer
episodes involving only part D or long-term oral endo-
crine chemotherapy tend to be much less costly than the
episodes that involves other therapies [4]. Receipt of
cancer-related surgery, [5] Part D eligibility and dual eli-
gibility for Medicare and Medicaid, [6] Receipt of radi-
ation therapy, [7] Clinical trial participation, [8]
Comorbidities, which are measured through a subset of
the CMS Hierarchical Condition Category (HCC) flags.
These flags are created by CMS on a calendar year basis
and indicate treatment for 70 different conditions in the
prior calendar year. The number of HCC flags that are
“turned on” indicates that episode expenditures increase
with higher numbers of pre-existing comorbidities.
Based on the number of HCC flags, we classify it into 6
categories: 0 flag, 1 flag, 2 flags, 3 flags, 4 flags and over,
and new enrollee [9]. History of prior chemotherapy use,
denoted by “clean period”. The clean period is calculated
by the episode start date minus the date of the most re-
cent chemotherapy claim before the episode start date
and categorized into three category as in OCM: between
1 and 61 days; between 62 and 730 days; and 730 days
above or no prior chemo claims [10]. Institutional status,
indicating whether the beneficiary had been institution-
alized in a long-term care facility for more than 90 days
as of the month in which the episode started, and 11)
Hospital Referral Region (HRR) relative cost, which cap-
tures the percentage difference in average episode costs
between a given HRR and all HRRs. It is formulated as:
HRR relative cost = [(Average episode cost for the HRR/

Fig. 1 Histogram of episode based expenditures
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Average episode cost across all HRRs) – 1] * 100. Based
on this, a geographic adjustment will be made to distin-
guish episodes occurring in high- and low-cost areas.
The distribution of episode costs for each factor vari-

able is summarized in Table 1, and scatterplots of epi-
sode costs for two continuous variables, age and HRR
relative cost, are presented in Fig. 2. Our final analytical
dataset included 2938 breast cancer episodes.

We applied a nonparametric machine learning tech-
nique, QRFs, on the OCM expenditure data. QRFs ex-
tends the framework of the Random forests (RFs). RFs
consists of an ensemble of classification and regression
trees, each of which is learned from a bootstrapped sam-
ple via binary recursive splitting. The RFs is adept at
capturing interactions and nonlinearities [20]. For its
high prediction accuracy and adaptability, RFs has

Table 1 Distribution of episode costs (in dollars) for each factor variablee

Actual Episode Expenditures

N Minimum 1st quartile Median Mean 3rd quartile Maximum

Sex

Female 2923 461.09 2272.80 5278.11 13,879.26 18,920.21 71,185.40

Male 15 1676.08 3378.14 5310.87 14,962.33 22,495.87 60,645.54

Chemotherapy drugs

Part B 828 1486.41 17,582.50 30,595.09 33,026.14 48,364.65 71,185.40

Part D 2110 461.09 1766.81 3270.07 6373.39 6440.57 71,185.40

Surgery

No 2818 461.09 2214.97 4949.55 13,449.74 18,088.10 71,185.40

Yes 120 1364.95 9037.30 17,372.43 24,101.19 35,220.38 71,185.40

Insurance

No PartDa 127 1111.65 14,545.65 24,983.93 28,798.25 42,946.34 71,185.40

PartD LISb 130 461.09 1989.09 4872.79 15,087.51 20,435.59 71,185.40

PartD NoLISc 1794 461.09 1888.15 3828.62 11,102.19 12,297.31 71,185.40

Full duald 887 461.09 3625.93 7926.81 17,201.15 24,179.71 71,185.40

Radiation

No 2681 461.09 2154.71 4596.04 12,460.25 15,144.30 71,185.40

Yes 257 1393.47 12,220.82 25,329.08 28,745.46 42,778.24 71,185.40

Trial participation

No 2923 461.09 2271.26 5260.65 13,869.41 18,975.22 71,185.40

Yes 15 2273.81 6065.91 16,671.52 16,880.54 18,742.96 48,306.45

Comorbidities

0 828 461.09 1639.29 3450.09 11,750.76 14,716.46 71,185.40

1 727 461.09 2179.77 5079.50 12,080.17 14,285.17 71,185.40

2 469 461.09 2872.91 5500.16 14,587.20 20,551.60 71,185.40

3 288 461.09 2973.28 7702.07 16,603.32 24,587.09 71,185.40

≥ 4 271 469.21 5298.04 13,266.07 19,067.06 27,077.94 71,185.40

New enrollee 355 461.09 2026.10 5079.58 15,468.37 25,367.09 71,185.40

Chemotherapy clean period

62–730 days 1235 461.09 1677.36 3147.19 6540.55 6463.20 71,185.40

> 731 days 657 461.09 2688.89 8603.03 16,839.45 25,329.08 71,185.40

1–61 days 1046 461.09 3957.41 12,421.50 20,700.20 33,603.99 71,185.40

Institutional status

Yes 14 3515.99 7298.26 14,258.97 22,597.47 34,961.03 66,192.20

No 2924 461.09 2271.99 5260.37 13,843.07 18,831.37 71,185.40

Note: aNo PartD means no part D enrollment; bPartD LIS means does not have full Medicaid benefits but does have Part D with low income subsidy; cPartD NoLIS
means has Part D enrollment but no low income subsidy; dFull dual means full Medicaid benefits (including Part D and LIS). eAge and HRR relative cost are
continuous variables and not included in this table; scatterplots of episode costs versus age and HRR relative cost are shown in Fig. 2
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gained popularity in medical research [20–26]. QRFs
uses the basis of RFs and gives an accurate way of esti-
mating conditional quantiles (rather than the mean) for
multivariate covariates [27]. QRFs grows an ensemble of
regression trees as in the standard RF algorithm, but for
each node in each tree, QRFs keeps the values of all ob-
servations in the node instead of just the means as in
RFs. Using the entire distribution of the observations,
QRFs can examine the effects of exposure for different
quantiles and provide a fuller picture of the exposure-
response relationship than mean-based RFs. For model
validation, as the QRFs model performs prediction using
the out-of-bag (OOB) observations – samples left out as
the testing data in each decision tree construction, it can
provide its own internal estimate of predictive perform-
ance that correlates well with either cross-validation esti-
mates for test set estimates [28]. We also conducted a
goodness-of-fit test of our QRFs model, using the metric
R1, or 1 minus the ratio between the sum of absolute devi-
ations in our QRFs models and the sum of absolute devia-
tions in the null (non-conditional) quantile model [29].
We implemented a backward stepwise variable selec-

tion algorithm, which we previously developed, based on
the variable importance scores generated by QRFs to de-
termine the key factors for the 90th percentile of the
episode expenditures [24]. The 90th percentile is com-
monly used in practice as the threshold for high-cost pa-
tients because the 10% of the population above the 90th
percentile represents the group that incurred a dispro-
portionately large share of all expenditures [9, 30]. The
algorithm is summarized in Fig. 3. Details of the

algorithm have been described elsewhere [24]. To obtain
a reduced set of informative clinical characteristics asso-
ciated with the upper tail of the episode costs, we imple-
mented a backward stepwise QRFs. At each step, we
removed the least important variable and rebuilt a QRFs
model with the remaining variables and recorded the
OOB average quantile loss (AQL) until no variable was
left. AQL assesses the prediction error of τ-th (e.g., τ =
0.9) conditional quantile by averaging the quantile loss
function over all observations [31, 32]. We identified the
key determinants of the 90th percentile of the episode
costs for breast cancer as the set of covariates corre-
sponding to the QRFs model with the smallest AQL.
Furthermore, we evaluated the relative importance of a
variable by the reduction in AQL induced by the inclu-
sion of that variable in the QRFs model.
Finally, to “unblackbox” machine learning, we included

the major factors selected by QRFs in a classical linear
QR model to quantify the effects of each factor on differ-
ent quantiles of the episode expenditures. We used na-
ture cubic splines with three degrees-of-freedom to
model the smoothed effects of two continuous variables,
age and HRR relative cost. All statistical analyses were
performed using R version 3.6.1. QRFs models were built
using the “quantregForest” R package.

Results
Figure 4 shows, for the 90th percentile, the estimated
OOB AQL for each QRFs model built at each iteration
of our stepwise backward algorithm. The “optimal”
QRFs model with the smallest prediction error suggests

Fig. 2 Scatterplots of episode expenditures versus age (A) and HRR relative cost (B)
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eight determinants for the upper tail of the cost distribu-
tion, including chemotherapy drugs used or adminis-
tered, chemotherapy clean period, radiation therapy,
eligibility for Medicare and Medicaid, age, comorbidities,
HRR relative cost and surgery. The goodness-of-fit test
of our QRFs model for the 90th percentile was 0.78, in-
dicating a reasonably good model fit.

The relative importance of each variable is also im-
plied in Fig. 4. Higher numbered variables were removed
from the QRFs model earlier than lower numbered vari-
ables. The drop in AQL induced by the inclusion of a
variable implies the importance of that variable to the
outcome. Taken together, chemotherapy drugs used or
administered during episodes and chemotherapy clean

Fig. 4 Estimated out-of-bag average quantile loss for the 90th percentile of episode expenditures corresponding to each QRFs model, which
includes the remaining k variables (numbered by 1, 2, …, k) after sequentially removing variables (numbered by k + 1, …, 11) with lower
importance scores, where k = 1, 2, …, 11. The null model is the intercept only model

Fig. 3 Quantile regression forests variable selection algorithm
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period were two predominant factors of the 90th per-
centile of the episode expenditure; they jointly accounted
for 77% of the total reduction in AQL from the null
model (with no covariates) versus the optimal model
(with eight key determinants).
We further provided an “unblackboxing” analysis to

quantify the effects of the identified key factors on the
episode expenditures. To demonstrate that a variable
may have different effects across quantiles of the out-
come distribution, we examined the respective effects on
the 90th (upper tail), 75th, 50th (median), 25th and 10th
(lower tail) quantile. To explore the possible nonlinear
age effects, we also fitted a separate model using nature
cubic splines with three degrees-of-freedom to capture
the smoothed effects of age.
Table 2 summarizes the point estimates and 95% con-

fidence intervals for each of the eight major determi-
nants. First, compared to long-term hormone therapy,
other non-chemotherapy drugs, Part B drugs and Part D
drugs were all associated with higher costs across all
percentiles of the cost distribution. Manifested by the
largest effect estimates, Part B drugs were the most ex-
pensive drugs for breast cancer. Both short (1–61 days)

and long (> 730 days) periods of no chemotherapy were
linked to higher costs among high-cost patients com-
pared to the quiescent phase of treatment (clean period
of 61–730 days), suggesting a “U” shape with highest
costs at onset of disease and at death [33]. Radiation,
surgery and multimorbidity were all associated with
higher costs across different quantiles. While full medi-
cation insurance in general incurred higher costs than
other partial insurance types, eligibility for Medicare and
Medicaid was only associated with median costs with in-
conclusive effect on other percentiles of the cost distri-
bution. There was a strong association between HRR
relative cost and the episode expenditures among high-
cost patients, suggested by much higher effect -- every
30 units increase in HRR relative cost was associated
with $1800 (95% CI, $1000, $2600) higher expenditure
-- for the 90th quantile than for the 10th quantile --
every 30 units increase in HRR relative cost was associ-
ated with $100 (95% CI, 0, $200) higher cost. This find-
ing is consistent with previous study findings that
individuals living in the high cost area go on to use more
hospital resources [34]. With age, on average, there was
a decreasing trend showing that older patients were

Table 2 The effects (point estimate [95% confidence interval]) of eight major factor variables on episode expenditures varied across
the 10th, 25th, 50th, 75th and 90th quantile of the expenditure distribution. Effects are measured in thousands of dollars

10th quantile 25th quantile 50th quantile 75th quantile 90th quantile

(Intercept) −4.5 (−14.4, − 1.6) −3.3 (−6.6, − 1.4) −3.2 (−7.7, 2.4) 3.1 (−3.6, 14.0) 8.7 (−7.1, 15.9)

Chemotherapy drugs (ref = Part D) (n = 2110)

Part B (n = 828) 9.5 (8.1, 10.9) 16.3 (14.0, 18.6) 25.0 (23.0, 27.1) 40.6 (37.7, 43.5) 47.8 (43.9, 51.7)

Chemotherapy clean period (days, ref = 62–730) (n = 1235)

> 730 (n = 657) 0.1 (− 0.2, 0.2) 0.3 (0.1, 0.5) 0.6 (0.2, 0.9) 1.5 (0.5, 2.4) 3.7 (1.6, 5.5)

1–61 (n = 1046) 0.1 (0.0, 0.3) 0.5 (0.3, 0.7) 0.8 (0.4, 1.3) 1.7 (0.9, 2.7) 6.2 (3.3, 9.6)

Radiation (ref = No) (n = 2681)

Yes (n = 257) 3.8 (2.5, 4.9) 6.4 (4.5, 7.3) 7.2 (5.8, 8.8) 7.1 (5.2, 10.3) 9.2 (5.2, 13.6)

Insurance (ref = No PartDa) (n = 127)

PartD LISb (n = 130) 2.4 (− 0.8, 4.9) 2.7 (− 0.2, 5.8) 4.3 (1.7, 9.3) 3.1 (− 0.5, 10.4) 0.7 (−3.4, 13.1)

PartD NoLISc (n = 1794) 2.7 (− 0.6, 5.7) 2.9 (− 0.2, 6.0) 3.6 (0.3, 8.3) 0.8 (− 2.5, 9.3) − 0.8 (−4.1, 5.3)

Full duald (n = 887) 3.2 (0.1, 6.1) 3.9 (0.9, 7.0) 5.2 (2.0, 10.1) 4.3 (0.8, 12.9) 2.8 (−0.1, 10.3)

Comorbidities (ref = 0) (n = 828)

1 (n = 727) 0.2 (0.1, 0.3) 0.3 (0.1, 0.5) 0.5 (0.3, 0.8) 0.8 (0.1, 1.6) 0.5 (−1.2, 2.1)

2 (n = 469) 0.6 (0.3, 0.9) 1.0 (0.7, 1.3) 1.3 (1.0, 1.7) 1.8 (1.1, 3.0) 1.5 (0.3, 3.1)

3 (n = 288) 0.8 (0.5, 1.1) 1.3 (0.8, 1.6) 1.5 (1.0, 2.2) 3.2 (1.1, 4.6) 3.3 (1.3, 7.5)

≥ 4 (n = 271) 1.4 (0.9, 1.8) 1.7 (1.2, 2.3) 3.1 (2.2, 4.8) 4.2 (2.5, 5.7) 6.2 (4.3, 7.8)

New enrollee (n = 355) 0.0 (−0.4, 0.3) 0.4 (−0.1, 0.8) 0.4 (0.1, 0.9) −0.2 (−1.1, 0.8) 1.2 (− 1.0, 4.6)

HRR relative cost (in 30) 0.1 (0.0, 0.2) 0.4 (0.1, 0.7) 0.8 (0.4, 1.2) 1.2 (0.8, 1.6) 1.8 (1.0, 2.7)

Age (10 years) −0.1 (− 0.2, 0.0) −0.2 (− 0.3, 0.1) −0.7 (−1.1, − 0.3) − 1.2 (− 1.7, − 0.8) − 1.8 (− 2.2, − 1.2)

Surgery (ref = No) (n = 2818)

Yes (n = 120) 5.2 (3.7, 6.5) 5.6 (4.7, 6.4) 6.7 (5.1, 7.9) 6.8 (4.7, 10.3) 8.6 (5.0, 13.8)

Note: aNo PartD means no part D enrollment for prescription drug coverage; bPartD LIS means does not have full Medicaid benefits but does have Part D with
low income subsidy; cPartD NoLIS means has Part D enrollment but no low income subsidy; dFull dual means full Medicaid benefits (including Part D and LIS)
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associated with less episode expenditures; and this trend
was more evident among the high cost patients (e.g.,
90th percentile) compared to low cost patients (e.g.,
10th quantile).
The fitted splines of age in Fig. 5 suggest their nonlinear

effects on the costs. The 90th percentile of the costs was
highest among patients aged 50–55, then gradually decreased
through age 80 before turning up towards the end of life.
Second, our results demonstrate that the effects of the

eight determinants upon episode-based expenditures are
not uniform, but are in general disproportionally larger
on the right tail of the cost distribution, i.e., those who
already have the highest expenditures. For example,
compared to long-term hormone therapy, Part B chemo-
therapy drugs cost $53,800 (95% CI, $49,900 – $56,800)
more among high-cost patients (sitting at the right tail)
and $10,200 more among low-cost patients (sitting at
the left tail). Compared to the quiescent period with a
chemotherapy clean interval of 62–730 days, a clean
interval of less than 61 days (e.g., around the onset of
disease) cost $6300 more among high-cost patients and
only $100 more among low-cost patients. These findings
suggest that our QR based analyses provide a full picture
about the effects of exposures. For HRR relative cost for
example, the effect of HRR relative cost is negligible
among low cost patients (10th percentile) but is mark-
edly evident among high cost patients (90th percentile).

Discussion
In this study, we applied a robust and reproducible ma-
chine learning based approach to identify major factors

for high-cost breast cancer patients, when the cost distri-
bution was highly skewed, and investigated the under-
lying effect mechanisms of the major factors, leveraging
a high-performance nonparametric quantile regression
technique, QRFs. We exploited a Mount Sinai OCM
cost data set on nearly 3000 breast cancer patients with
episode-based clinical information and demographic and
social-economic status.
Our results provided insights into drivers of high med-

ical costs for breast cancer. Our approach identified
eight determinants that jointly impact episode-based ex-
penditures for breast cancer among high-cost patients.
Among these factors, chemo drugs and chemo clean
period were two predominantly influential variables,
followed by the number of comorbidities and age. These
determinants did not uniformly impact upon the expen-
ditures, but disproportionally affected the high-cost pa-
tients, and their effects on low-cost patients may be
negligible. Using mean-based methods would have ig-
nored the disproportionality in the effect estimates, lead-
ing to a limited and biased conclusion. Our approach
offered a “higher-resolution” analysis that can be used to
expand and deepen the existing quantitative evidence on
clinical risk factors for episodes expenditure.
Results from our study may help inform population

health management initiatives. Establishing key determi-
nants for high-cost cancer patients allows policymakers
to develop tailored interventions to meet the needs of
those high-cost patients and to reduce high cancer costs.
For example, among those who are already high cost pa-
tients, the age cohort 50–55 was found to be associated

Fig. 5 Effect estimates of age on the 10th, 50th and 90th quantile of the episode cost distribution, using natural cubic splines. To obtain
sufficient legibility, we did not plot results for the 25th and 75th quantile
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with the highest costs. Developing strategies to reduce
care spending tailored for this age cohort may help avoid
waste of scarce resource. The Part B chemotherapy drugs,
a chemotherapy clean interval of less than 61 days and
multimorbidity were all drivers of high costs among those
who already had the highest spending. These findings may
provide insights into strategies for expanding the scope of
care management programs investigating preventable
spending. Currently such programs are relatively narrow
and could have included more broad measures of prevent-
able or wasteful spending [6]. Our results may assist in de-
veloping algorithms targeted at subgroups defined by
identified underlying high-cost drivers to avoid prevent-
able costs through interventions such as reducing dupli-
cate services, contraindicated care, unnecessary laboratory
testing or prolonged hospitalizations [6].
There are several limitations in this study. First, we

the relationships between clinical and health characteris-
tics and medical costs do not bear a causal interpretation
due to the nature of the cross-sectional data [35–37].
However, our results identified important factors of high
costs for breast cancer and can potentially stimulate fu-
ture causal inference research in cost analysis. Second,
the cost data for this study, made available by CMS, has
both pros and cons. This single payer data allows for a
comprehensive, consistent dataset that includes all of
the health care services provisioned for a patient. How-
ever, it is limited to an elderly population and may not
be reflect spend drivers for commercial members [38].
Also, the Medicare dataset included Medicare payments
only, and did not incorporate out of pocket expenses
which can be significant for medications in Part D.
Third, our data is from a single institution. Despite the
lack of national representation, because the Mount Sinai
Hospital is one of the nation’s largest hospitals, we were
able to include a large number of episodes in our ana-
lysis. Our methods are highly flexible and reproducible,
and can be applied to a larger set of OCM data for
breast cancer or other data sets alike for other kinds of
cancer. Finally, there could be other important variables
that were not included in our study, either unmeasured
or not collected in our data, such as the accurate capture
of disease progression [39]. Though the type of drugs at
some level reflects the disease severity, cancer stage is not
collected in the OCM data. CMS is working to expand the
factors of the OCM to consider disease progression. Devel-
oping a sensitivity analysis strategy to evaluate the impact of
unobserved data could be a worthwhile contribution [40].
Despite the potential omitted variables, by using an innova-
tive and principled machine learning approach on a high-
quality dataset with sufficiently large sample size, we believe
the scope and depth of our analysis can provide important
insights on policymaking and lead to more innovative inves-
tigations in the area of breast cancer health services research.

Uncovering true underlying determinants and their
relative importance is challenging, especially when the
exposure-outcome relationship may be nonlinear and
the outcome is heavily skewed.
In public health research, determinants are often se-

lected a priori or using test procedures based on some
arbitrary threshold value. On the other hand, many cost
analyses focus on building predictive models to identify
high-cost patients. It remains unclear how the under-
lying complex web of factors drive up the costs for
breast cancer. Our method is highly agnostic, leveraging
flexible machine learning, and provides “higher-reso-
lution” analysis for specific insights into important
drivers for high costs and the detailed effect mechanisms
on the costs among patients with varied level of costs. In
conjunction with the relative importance of determi-
nants, our method can provide valuable guidance for tai-
lored and effective high-cost prevention interventions.

Conclusions
High-performance and data-driven machine learning
methods provide insights into the underlying web of fac-
tors driving up the costs for breast cancer care manage-
ment. Results from our study may help inform
population health management initiatives and allow pol-
icymakers to develop tailored interventions to meet the
needs of those high-cost patients and to avoid waste of
scarce resource.
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