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Abstract

Background: Issuing of correct prescriptions is a foundation of patient safety. Medication errors represent one of
the most important problems in health care, with ‘look-alike and sound-alike’ (LASA) being the lead error. Existing
solutions to prevent LASA still have their limitations. Deep learning techniques have revolutionized identification
classifiers in many fields. In search of better image-based solutions for blister package identification problem, this
study using a baseline deep learning drug identification (DLDI) aims to understand how identification confusion of
look-alike images by human occurs through the cognitive counterpart of deep learning solutions and thereof to
suggest further solutions to approach them.

Methods: We collected images of 250 types of blister-packaged drug from the Out-Patient Department (OPD) of a
medical center for identification. The deep learning framework of You Only Look Once (YOLO) was adopted for
implementation of the proposed deep learning. The commonly-used F1 score, defined by precision and recall for
large numbers of identification tests, was used as the performance criterion. This study trained and compared the
proposed models based on images of either the front-side or back-side of blister-packaged drugs.

Results: Our results showed that the total training time for the front-side model and back-side model was 5 h 34
min and 7 h 42 min, respectively. The F1 score of the back-side model (95.99%) was better than that of the front-
side model (93.72%).

Conclusions: In conclusion, this study constructed a deep learning-based model for blister-packaged drug
identification, with an accuracy greater than 90%. This model outperformed identification using conventional
computer vision solutions, and could assist pharmacists in identifying drugs while preventing medication errors
caused by look-alike blister packages. By integration into existing prescription systems in hospitals, the results of this
study indicated that using this model, drugs dispensed could be verified in order to achieve automated
prescription and dispensing.
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Background
Issuing of correct prescriptions is the mainstay of patient
safety. Medication errors are the most important prob-
lem that influences safety in health care [1]. The most
common medication errors are caused by human factors,
such as fatigue and inadequate knowledge [2]. In par-
ticular, look-alike and sound-alike (LASA) is the lead
error at the level of pharmacists or physicians. A good
policy to prevent LASA is to change drug names and
their packaging [3]. Researchers used chart reviews and
mathematical methods to identify problematic pairs of
drug names, and constructed an automated detection sys-
tem to detect and prevent LASA errors [4]. Unfortunately,
major problems remain in drug identification: many drugs
look alike; drugs are relatively small in size; and a large
number of drugs need to be identified. Existing identifica-
tion solutions still have their limitations [5–7].
However, some assistive tools do exist. Automated dis-

pensing cabinets (ADCs) represent a solution that dis-
penses drugs automatically [8, 9], and there are many
ADC technologies in existence. Some studies have used
barcoding for drug identification and prevention of
medication errors [9]. Devices that employ radio-
frequency identification (RFID) and Bluetooth to identify
the positions of drugs have been designed [8]. Most large
hospitals use robots; however, there are fewer robots
than needed in hospitals with fewer than 100 beds [10].
Other major problems with the use of ADCs are the de-
velopment of suitable software that can identify drugs
accurately without the need for pre-processing of drugs
or a large space in the pharmaceutical department be-
fore applying the systems. In addition, it needs to be en-
sured that these systems will not increase the burden on
pharmacists during the prescription process [11, 12].
Alternatively, image-based solutions have been devel-

oped. Traditional image recognition finds features
through algorithms and then classifies images using cer-
tain classifiers [13, 14]. Lee et al. encoded color and
shape into a three-dimensional histogram and geometric
matrix, and encoded the imprint as a feature vector
through a Scale Invariant Feature Transform (SIFT) de-
scriptor and a Multi-scale Local Binary Pattern (MLBP)
[15]. Taran et al. [16] proposed the use of a variety of
traditional artificial feature integration methods to ex-
tract high-dimensional drug features from images to
achieve identification of blister packages. Saitoh [17]
used the local feature and nearest-neighbor search
method to sort images of blister packages in a database
according to input test images, and sorted blister pack-
ages with the most similar shapes and colors through
voting scores.
Most significantly, thanks to the vigorous development

of Graphics Processing Units (GPUs) for parallel com-
puting, a current mainstream process is to adopt deep

learning methods to replace traditional classifiers. Exam-
ples include biomedical imaging and wave recognition
[18, 19]; speech recognition [20, 21]; biomedical signal
detection [18, 19, 22]; cancer identification [19, 22, 23];
potential drug discovery [24, 25]; and adverse drug ef-
fects [26]. Images of the drug are pre-processed to ob-
tain the correct viewing angle and drug separation, and
the characteristics of the pills are established manually
[27]. Drug identification is implemented in a framework
based on a Deep Convolutional Network (DCN), and
achieved good recognition. In addition, another method
of pill identification first finds the location and area of
the drug by detecting the edge contour of the pill [27];
then, through a variety of data augmentation methods
such as color shift, size adjustment, Gaussian blur, etc.,
more training samples are generated to solve the prob-
lem of sparse training samples. Three GoogLeNet deep
learning networks are used as the main classifiers to
train the color, shape and characteristics of the pills, and
the recognition results of the three models are then
combined to obtain the final recognition results [28].
This study focused on the problem of drug identifica-

tion using visual images of blister packages. We con-
structed a Deep Learning Drug Identification (DLDI)
model that identifies drugs automatically and can assist
pharmacists in dispensing prescriptions correctly. Our
goal was to illustrate how ‘look-alike’ error can be cap-
tured and explained by a convolution-based deep learn-
ing network whose working mechanism is in much
similarity to the human visionary recognition capability.
Subsequently, appropriate solution to extract more de-
tailed nuance differences can be utilized in distinguish-
ing look-alike objects.

Methods
To investigate how a deep learning network identifies
object types, a dataset containing images both sides of
250 types of blister packages were collected for training
and testing data of a deep learning network. Identifica-
tion results in terms of precision, recall, and the com-
bined F1-score were computed, where an identification
error can be regarded as an error due to look-alike
cases.

Data resources
This study collected drugs from the Out-Patient Depart-
ment (OPD) of a medical center. Of the 272 kinds of
drug, this study focused only on recognition of pharma-
ceutical blister packages. As such, 6 classes of drug pack-
aging (Fig. 1), totaling 32 kinds of drug, were excluded,
as follows: clip chain bags, powder bags, foil packaging
bags, transparent bags, paper packages, and bottle pack-
aging. The remaining 250 drugs with blister packaging
were considered.
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We aimed to identify blister packages by their im-
ages, photographed using a camera from different an-
gles. In collecting the training set, 72 images were
taken for each side of each type of drug: the camera
focused from 9 different angles, with 8 different rota-
tion directions of the drug shown in the images
(Fig. 2). Both front-side and back-side images were
taken for each drug, resulting in a total of 36,000 im-
ages as the training data for deep learning. Images of
the front sides of packages contained the shapes and
colors of the pills or tablets, whereas images of the
back sides contained mostly texture patterns of the
drugs or logos of pharmaceutical companies. These

images were used to train CNN networks, the deep
learning networks, for object identification.

Deep learning architecture
The concept of the Convolution Neural Network (CNN)
was proposed by LeCun and others in 1989. These deep
learning networks usually consist of convolutional layers,
pooling layers and fully-connected layers [29]. As the
convolutional layers and the pooling layers in the net-
work architecture enhance the relationship between pat-
tern recognition and adjacent data, a CNN can be
applied to signal types such as images and sounds.
Through multi-layer convolution and pooling, the

Fig. 1 Excluded drug packages. Six classes of drug packaging were excluded: clip chain bags, powder bags, foil packaging bags, transparent
bags, paper packages, and bottle packaging

Fig. 2 Photographs from different angles. Different angles were employed for the camera to focus on, with different rotation directions of the
drug packaging. Both front-side and back-side images were obtained for each type of drug

Ting et al. BMC Health Services Research          (2020) 20:312 Page 3 of 9



extracted features are treated as inputs, and then for-
warded to one or more fully-connected layers for classi-
fication. Unfortunately, the simple CNN is not effective
for more complex images. Krizhevsky et al. [30] recon-
structed a CNN in 2012, and in CNN-based networks,
the deep learning framework of “object detection” has
also been continuously improved. R-CNN was the first
successful CNN-based object detection method, but the
speed of detection was very slow [31]. Later, the Fast
and Faster R-CNN were constructed [32], optimized on
the basis of R-CNN, and the speed and accuracy were
improved significantly.

Software and hardware devices
This study used You Only Look Once (the abbreviation
‘YOLO’ having been proposed by Redmon et al. in 2015)
as the solution framework for deep learning [33]. An
end-to-end structure was adopted, and compared with
the general deep learning method, YOLO focuses on
both the area prediction part of detection and the cat-
egory prediction part for classification. YOLO integrates
detection and classification into the same neural net-
work model, with fast and accurate target detection and
recognition. These deep learning techniques employ the
following features: batch normalization for faster conver-
gence; passthrough for the features identification in-
creasing; hi-res classifier to increase the resolution of the
images; direct location prediction to strengthen the
stabilization of position prediction; and multi-scale train-
ing to improve both speed and accuracy. The SENet and
ResNet experiments in this study used the Kubuntu
14.04 system and the Darknet framework in the Caffe
structure of Windows 7, which is a special hardware de-
vice host for deep learning. This study also employed an
Intel® I7–6770 Eight-Core Processor (CPU), 16 GB
RAM, and a NVIDIA GTX 1080 Graphic Processing
Unit (GPU).

Experimental design
For model evaluation, this study partitioned the col-
lected data into separate training and testing sets. The
training set trained the deep network to generate
models, while the testing set evaluated the performance
of the constructed models. We randomly choose three-
quarters of the 72 pictures of each type of drug for in-
clusion in the training set, and the remaining quarter
were included in the testing set, with 13,500 images in
total in the training set and 4500 images in the testing
set. This study trained 100 models for each of the front-
side and back-side images using the training set. The
best model was chosen, which was defined as the model
with the greatest accuracy (highest F1 measure) and the
fastest speed (fewest Epochs). This study also standard-
ized the YOLO v2 protocol for both the training and

testing datasets in each model. All images were con-
verted into 224 × 224 pixels. Neither data augmentation
nor pre-training of the model were performed during
training. The batch size was 8, meaning that parameters
were re-adjusted every 8 images. The highest training
frequency was 100 Epochs, one Epoch meaning that the
deep network ran all the pictures during training. The
parameters were saved after every Epoch was completed
(Table 1).

Outcome measurement
Confusion matrixes were used to record the results if
blister packages were identified, correctly or not. Correct
matches were listed on the diagonal of the matrix,
whereas cases of missed identification were marked by
non-zero values off the diagonal. The higher the num-
ber, the greater the chance of misidentification of blister
packages of drugs. For example, assume that there is a
system for classifying three different drugs (Table 3).
Suppose that there are 28 drugs in total: 9 drug A, 6
drug B, and 13 drug C. In this confusion matrix, there
are actually nine drug A, but three of them are misiden-
tified as drug B. For drug B, one of the drugs is misiden-
tified as drug C, and two are misidentified as drug A.
The confusion matrix shows that it is more difficult to
distinguish between drug A and drug B, but easier to
distinguish drug C from the other drugs.
The data presented in Table 2 are for the model ob-

tained from 100-Epoch training. The training time,
number of training Epochs, precision, recall, and F1
measure were recorded as the evaluation results. The
best recognition performance was identified according
to the F1 score, and the Epoch number was used to
identify the fewest numbers of training Epochs. The re-
call, also called the true positive rate or the sensitivity,
measures the proportion of positives correctly identified.
Recall = True Positive / (True Positive + False Negative),
of which True Positive denotes a correct identification;
while False Negative denotes a misidentified result by
taking the correct target as something else. The preci-
sion, also called the positive predictive value, measures
the proportion of positives among all identified. Preci-
sion = True Positive / (True Positive + False Positive), of
which False Positive denote a misidentified result by

Table 1 Training and testing rules of the deep learning network

Size of input image Adjusted to 224 × 224 pixels

Network built-in data
augmentation function

disabled

Pre-trained model no

Batch size 8

Highest number of training Epochs 100 Epochs (168,800 iterations)

Training weight file storage timing 1 Epoch (1688 iterations)
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taking something else as the correct target [12]. The F1
measure is an evaluation that combines both sensitivity
(recall) and precision. The calculation formula of the F1
score is as follows:

F1 score ¼ 2� 1
1

Precision
þ 1
Recall

¼ 2� Precision� Recall
Precisionþ Recall

At the same time, we recorded the training time of the
model, the number of Epochs in the training, and the
classification performance of the model for the testing
dataset.

Results
In this study, two deep learning models were employed
for training, and the identification results were com-
pared: the front-side (pill shape and color) model and
the back-side (textual pattern and logo) model of blister-
packaged drugs. The total training time of the front-side
model and the back-side model was 5 h 34min and 7 h
42min, respectively. The number of Epochs of the front-

side model and the back-side model was 60 and 65, re-
spectively. The precision and recall of the back-side
model (96.26 and 96.63%, respectively) were better than
those of the front-side model (94.09 and 94.44%, re-
spectively), meaning that texture and logo carried more
distinguishing features than were contained in pill shape
and color. The F1 score of the back-side model (95.99%)
was better than that of the front-side model (93.72%)
(Table 2), meaning that when only one model can be
used, the back-side model is the preferred choice.
In order to show that the identification performance

of the deep learning network for blister-package identifi-
cation is comparable to that of the human eye, we used
the YOLO v2 testing line chart to illustrate the results
for the front-side and back-side images (Fig. 3). We
found that the F1 score increased and the correct rate of
identification increased as the training Epoch number
increased; a plateau was then reached when the Epoch
number was larger than 8–10, irrespective of front-side
or back-side model.
Deep learning models share cognitive capabilities simi-

lar to those of the human eye, and what confuses a deep
learning network can also confuse the human eye. As
such, in order to identify look-alike blister packages, we
created confusion matrixes, which recorded the actual
blister packages that were identified, correctly or not.
Correct matches were listed on the diagonal of the
matrix, whereas cases of missed identification were
marked by non-zero values off the diagonal. The higher
the number, the greater the chance of misidentification
of blister packages of drugs.

Table 2 YOLO v2 experimental results

Image type Experiment 1 (Front-side) Experiment 2 (Back-side)

Training time 5 h 34 mins 7 h 42 mins

Epochs 60 65

Precision 94.09% 96.26%

Recall 94.44% 96.63%

F1 score 93.72% 95.99%

Fig. 3 YOLO v2 testing line chart. The F1 score and the correctness rate of identification increased as the number of training Epochs increased; a
plateau was then reached when the Epoch number was larger than 8–10, irrespective of front-side or back-side model
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For example, assume that there is a system for classify-
ing three different drugs (Table 3). Suppose that there
are 28 drugs in total: 9 drug A, 6 drug B, and 13 drug C.
In this confusion matrix, there are actually nine drug A,
but three of them are misidentified as drug B. For drug
B, one of the drugs is misidentified as drug C, and two
are misidentified as drug A. The confusion matrix shows
that it is more difficult to distinguish between drug A
and drug B, but easier to distinguish drug C from the
other drugs. In the confusion matrix, correct identifica-
tions are on the diagonal; in contrast, misidentified ones
are the non-zero terms off the diagonal.
This study identified two groups of misidentified images

based on the confusion matrixes of the two experiments for
the front-side and back-side models. According to the iden-
tification results recorded in the confusion matrix for the
front-side model, the drug RITALIN (METHYLPHENID-
ATE) (Fig. 4a) has a blister package that was misidentified
as amBROXOL (MUSCO) (Fig. 4b). In addition, the blister
package of ATENOLOL (UROSIN) (Fig. 4c) was mis-
identified as DIHYDROEROGOTOXINE (Fig. 4d).
This is because the pills shown on the front of the
blister packages share the same color and shape, lead-
ing to misidentification.
According to the identification results recorded in the

confusion matrix for the back-side model, the blister
package of Ciprofloxacin (Fig.4e) was misidentified as
URSOdeoxycholic acid (Fig. 4f), and the blister package
of Alprazolam (Fig. 4g) was misidentified as Rivotril
(CLONAZEPAM) (Fig. 4h). These two misidentifications
were due to the fact that the backs of the blister pack-
ages were wrapped in aluminum foil, and the textual
patterns on the back-side were of the same color, with-
out significant difference.

Discussion
The study provides a qualitative examination regarding
how look-alike blister packages are recognized or con-
strained by deep learning networks that are reminiscent
of human visionary cognition capability. With racing
speed of progress in deep learning techniques, it is ex-
pected that more accurate deep learning solutions will
emerge to distinguish nuance image features among
different object types, thus mitigating if not solving the
dispensing error caused by look-alike blister packages.

Image based techniques, being non-intrusive and with-
out resort to additional devices like RFID tag or bar
code, have been a preferred solution to object identifica-
tion problems. Traditional image-based solutions by
computer vision rely on well-defined hierarchical fea-
tures for effective comparison [34, 35]. Some of the re-
search work from literature reported performance of less
than 80% of accuracy with limited number of types of
less than 50 [15, 36]. In contrast, the distinguishing fea-
tures reported in this study are learned by adjusting net-
work parameters through fitting training data, the
process being much similar to human visionary recogni-
tion process, thus achieving accuracy better than 90%
among 250 types. With the advent of deep learning tech-
nique, identification witnesses a revolutionary shift
which can benefit blister package identification critical
to dispensing safety.
This study proposed a novel deep learning drug identi-

fication (DLDI) model that delivered satisfactory results
for drug identification based on images of blister pack-
ages. The results of this study showed that identification
by “deep learning” is no less accurate than identification
by the human eye. The CNN simulates the response of
neurons in the human brain to signals by performing
various mathematical operations on features to complete
the classification. Repetition of these processes achieves
the purpose of recognition. In earlier studies, features
were defined subjectively to identify blister packages of
drugs [17]. Deep learning allows learning of features
automatically, without the need to define features of
drugs before machine learning. This advantage elimi-
nates human error and assists pharmacists to identify
drugs correctly. Deep learning enables identification of
the characteristics of individual drugs clearly and recog-
nizes the drugs that pharmacists/humans consider look
alike. Just one or two cameras in dispensing cabinets are
required, and medication errors will be prevented.
Referring to Table 2, this study found that back-side

images of blister packages of drugs were better than
front-side images for identification purposes. While
back-side took more training time to better distinguish
textual features, based on 4500 test images evenly dis-
tributed over 250 types, the associated performance cri-
teria of: precision, recall, and F1 score are all better than
that by the front-side images. This is because the infor-
mation on the back of the packages includes the
pharmaceutical company, drug name, dose, and logo in
larger text than on the front of the package, which only
presents information regarding the color and shape of
the pills. The front of the drug packaging contains some
three-dimensional information with regards to drug
shape. However, some blister packages were not easily
recognized by the deep learning network, and were more
likely to be confused according to the confusion matrix.

Table 3 Three drugs as an example of a confusion matrix

Predicted class Drug A Drug B Drug C

Actual class

Drug A 6 3 0

Drug B 2 3 1

Drug C 0 1 12
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These unrecognizable blister packages correspond to
look-alike blister packages recognized by the human eye.
In the future, we will employ a convolution kernel to
identify data features to generate signals and perform a
comparison with the human eye.
There are many kinds of drug packages that need to

be identified: pills; blister packaging; clip chain bags;
powder bags; foil packaging bags; transparent bags;
paper packages; bottle packaging, etc. For medication
adherence and drug preservation, most drugs are pack-
aged in blisters [37]. Moreover, for some drugs, infrared
spectrum analysis of tablets in intact blisters is per-
formed to distinguish between genuine and counterfeit
samples [38]. DLDI models may also be applied to auto-
mated dispensing cabinets (ADCs), and can be employed
in cooperation with both pharmacists and robots. Some
robots have cameras, which would be useful for applica-
tion of our model for drug identification. In the future,
we will construct a blister-package identification model
that takes account of both sides of the packaging, which
will contain more information than just a single side for
identification. The identification accuracy may also be
increased by use of three-dimensional images of drugs
or images with different spectrums for deep learning.
There are some considerations for future studies. First,

this study only examined blister-packaged drugs, and
used the whole of the blister packages for identification.
This model cannot be used to identify blister packages
when held in the hand, or trimmed blister packages.
Moreover, other types of drug packaging need to be
studied. In some cases, the pill size and shape were too
familiar to identify. One of the aims of future study is to

address these issues. Second, the training time was too
long, with more than 5 h required for training the
models in this study. More time is required if more than
one kind of spectrum is used, and a more effective pro-
gram is needed to train the models. Third, re-training
would be needed if one or more new drugs are added in
this model. In the future, we hope to develop a system
in which only “PARTIAL” training is required when
drugs are changed or added.

Conclusion
Our goal was to illustrate how ‘look-alike’ error can be
captured and explained by a convolution-based deep
learning network whose working mechanism is in much
similarity to the human visionary recognition capability.
Subsequently, appropriate solution to extract more
detailed nuance differences can be utilized in distin-
guishing look-alike objects. With an accuracy greater
than 90%, the results of this study may be applied to
the real environment, and may assist pharmacists to
identify drugs and prevent medication errors caused
by look-alike blister packages. The results of this
study can also form the core software for robots,
allowing filling of prescriptions automatically and pre-
venting medication errors.
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Fig. 4 Front and back images of blister packages that were misidentified using the models. The identification results were recorded in confusion
matrixes for each model. RITALIN (METHYLPHENIDATE) (a) was misidentified as amBROXOL (MUSCO) (b) and ATENOLOL (UROSIN) (c) was
misidentified as DIHYDROEROGOTOXINE (d) in the front-side model, while Ciprofloxacin (e) was misidentified as URSOdeoxycholic acid (Fig.
4f) and Alprazolam (g) was misidentified as Rivotril (CLONAZEPAM) (h) in the back-side model.
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